ESI The Erwin Schr odinger

نویسندگان

  • Victor G. Kac
  • Ivan T. Todorov
چکیده

Chiral orbifold models are deened as gauge eld theories with a nite gauge group ?. We start with a conformal current algebra A associated with a connected compact Lie group G and a negative deenite integral invariant bilinear form on its Lie algebra. Any nite group ? of inner automorphisms or A (in particular, any nite subgroup of G) gives rise to a gauge theory with a chiral subalgebra A ? A of local observables invariant under ?. A set of positive energy A ? modules is constructed whose characters span, under some assumptions on ?, a nite dimensional unitary representation of SL(2; Z). We compute their asymptotic dimensions (thus singling out the nontrivial orbifold modules) and nd explicit formulae for the modular transformations and hence, for the fusion rules. As an application we construct a family of rational conformal eld theory (RCFT) extensions of W 1+1 that appear to provide a bridge between two approaches to the quantum Hall eeect.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ESI The Erwin Schr odinger

2 ABSTRACT In this paper we explicitly prove the invariance of the time-dependent string gravity Lagrangian with up to four derivatives under the global O(d; d) symmetry.

متن کامل

ESI The Erwin Schr odinger

3 We consider commuting squares of nite dimensional von Neumann algebras having the algebra of complex numbers in the lower left corner. Examples include the vertex models, the spin models (in the sense of subfactor theory) and the commuting squares associated to nite dimensional Kac algebras. To any such commuting square we associate a compact Kac algebra and we compute the corresponding subfa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009